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Motivation and Purpose

In the staggered r-z discretization, develop an artificial viscosity that
e is genuinely r-z (not area-weighted)
e preserves spherical symmetry
e and is strictly dissipative

Outline of This Presentation

e Intro: Area-Weighted schemes

e Our viscous force (LapEdge): general form and properties
Equiangular polar grid

- Velocity

- Internal energy

- Boundary: velocity and total energy

e How does it work on general grids
- Chord length
- Generally applicable BC at the z-axis

e Numerical results
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Area-Weighted Schemes

Using Cartesian pressure and viscous forces, the momentum equation reads

dUy
mp dt =Tp Z(ch _l_F
c(p)

Cell mass m . taken as fundamental. The cylindrical nodal mass m, defined so that % is
independent of angle and time invariant for a symmetric grid =- spher. symmetry preserved

Internal energy change is typically based on

o
gcz_zrp(ch_‘_F c ) Up
p(c)

Contribution to the internal energy from the viscous term is not dissipative, i.e.
S rpFLY U, <0
p(c)
is not necessarily true. This is the case for the tensor viscosity of CS.

By CS we refer to the original method [Campbell and Shashkov, JCP 172 (2001)]. For other
formulations see [Wendroff, JCP 229 (2010)] or [Kolev and Rieben, JCP 228 (2009)], for an
improved version see [Lipnikov and Shashkov, JCP 229 (2010)].
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The LapEdge Viscous Force - General Form

e We are going to define a genuinely cylindrical (not area-weighted) artificial viscous force,
so that the equation for velocity becomes

dU D A
mp d—tp — Z(""p ch + ch)'
c(p)

e This force will be a sum of edge forces, namely,
A
Fpe = Z fpe,
e(p,c)

each of which will have the form

u
(fpe)r = Oce (Te AUpe — Qe _e) ) (fpe)z = OceTe AUpe-

e Motivated by the form of the Laplacian of a vector in r-z geometry:
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The LapEdge Viscous Force - Details

u
(fpe)r = Oce (Te AUpe — Qe _€> ) (fpe)z = OceTe A’Upe

Te

e 1. is the arithmetic average r of the edge
e u. is the average of the radial components of the endpoint velocities

e o.c > 0 supplies the proper dimensions (density times velocity times length)
The exact form of o critically affects the behavior of our method, but it plays no role in the
symmetry and conservation properties of the scheme. Here we use in particular

char
Oce — SC gec Ke

- Sc is the switch to turn off viscosity in expanding cells (detected by velocity divergence).

2
= e is the viscosity module e = pe (ko P5E AU + \/(kg Lol AUC) ™+ (k1 50)? )

- ("7 s the characteristic length  ¢S13" — ffe , where A is the area (Cartesian volume) of
cell c and 2. is the length of edge e.

e The constant a. > 0 will be constructed so that if the grid is equi-angular polar then
symmetry will be preserved. a. will depend only on a few neighbors of p.
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The LapEdge Viscous Force - Properties

u
(fpe)r = Oce (Te AUpe — Qe _€> ) (fpe)z = OceTe A’Upe

Te

If the edge e(p, c) connects point p of c to point g of ¢, then the velocity difference AU, is
AUpe — (AuPe 9 A'Upe) — Uq - Up.

e Then clearly z-momentum is conserved, since the z-component of the force at p is the
negative of it at q.

e Itis easy to see that this viscous force is dissipative: Since
2
[Ug — Upl - Up + [Up — Ug] - Ug = —[[Uqg — Uy |7,
the internal energy change is
A 2 ug
Z (FpC'Up) — _Zo-ce Te ||Uq_Up|| +2ae_ SO.
p(c) e(c) re
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Equiangular Polar Grid - Acceleration

Assume
r; i = Rjsin(iy), z; ; = Rjcos(iv),

so that both the spherical radii i, and the angular interval + are known.
e Assume symmetric data, including the o coefficients.
Without losing generality, we setall 0. = 1

e The points 1, 0, and 3 lie on the circle of radius R, while the
points 2, 0, and 4 lie on the ray with angle 6.

From “rays” (0,2) and (0,4):
e - e Consider first the viscous force contribution from the edges (0,2)
| and (0,4). For all such edges forming a straight line we set a. = 0.

e Velocity field is symmetric = Us, U, and U, are directed radially (all inward or all outward)
with magnitudes independent of angle 6. That is, each of those velocities is of the form
U, = %+ ||Ug|| (sin @, cos ) for k € {0, 2, 4}, with ||U,|| independent of 6.

e Each r, = R, sin 6 = the viscous force at point 0 from these edges has the form

fo,rays = hsin 0 (sin 6, cos 0), h independent of angle 6,

that is, it is directed radially and the components have sin 6 as a common factor.
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Equiangular Polar Grid - Acceleration

From “circles” (0,1) and (0,3):

e Symmetry = safely assume that the velocity vectors at 1, 0, and
3 are radial unit vectors. Thus

U]l = sin(@ — 'y), ug = sin 9, u3 = Sin(e + 'Y)a

vy = cos(6 — ) vg = cos 0 vz = cos(6 + 7).

" o The r averages are & (r1 5 + rg) = 4 Ro(sin 0 + sin(67.7)).
e Components of the viscous force at 0 reduce to
(focire)r = - = —2 Rp sin? v sin 0 sin 0 + R sin’ v — 2a/Ry,

(focirc)z = -+ = —2 Ry sin? 7 sin 6 cos 6.

e Therefore, if we set a = 3 R sin” +, this force is radial.

e Common factor sin 0 =- the acceleration will be radial and independent of angle 6.

1 p2 .2 - : .
3 Rjsin®~y on a circle of radius R?;.
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Equiangular Polar Grid - Internal Energy

The internal energy equation using our edge viscosity is now

dac D A
a Zp(c)(TpFPC + ch) - Up,

me

and thus symmetry is maintained if dz. = mic Zp(c) FAC - U, is afunction only of R
e Consider the cell with vertexes (1,5,2,0) and its cylindr. volume V|
Let A be the planar area of the triangle (1,Q,0) and

Let Ao be the planar area of the triangle (5,Q,2). Then

V = 3[(r1 + ro)A1 — (r5 + r2) Aa).
Note that A; and A5 are independent of angle 6.
It can be shown that for this cell,

S o) (Ffe - Up) = A(r1 +10) + B(rs +12),
where A and B are again independent of angle 6.

Q: (anywhere on the z-axis)
I

r5t7T2
e Then L pen— Ao £ Bls+ra) A+ B
— Pc O0Ec =— _ - r5+1r9 ’
3 (r1+7m0)A1 — (15 +12)A2 A, — P2 Ay
but ;?i;g is independent of angle 0, and therefore so is dc..
A
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Equiangular Polar Grid - BC for Velocity

Clearly, points on the z-axis (r=0) require special treatment
Suppose full symmetry and consider nodes on the same spherical radius R
For interior nodes, the contribution to the viscous acceleration is

doU, Fﬁ _ h sin 0 (sin O, cos Op) _ E(sin@ cos 0,)
/8 p> p

dt mp B sin 0y

with ~» and 8 independent of angle 6
To preserve symmetry, it seems inevitable to take at the boundary, i.e. at (r, z), = (0, R),
doug 0 ddvg _h

dt ’ dt 38’
But there is a simple generally applicable BC that preserves symmetry, which we show later.
However it is interesting to see what £ is:

In logically rectangular notation (r, z); ; = R;(sin6;,cos 6;), (u,v); ; = g;(sin;, cos 0;).
Assuming the interior node force in the form Fg‘(u, v); j = h sin6; (sin 6;, cos 0;) yields
.2
h = (\% [(Rj1+ Rj)(gj+1 — 95) + (Bj + Rj—1)(gj—1 — 9;j)] —2g; Rj sin 7}) :

A

~"

from rays from circles

dévq _
dt

Note that the momentum equation at bdry 5 h is consistent with the AW mom. egs.
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Equiangular Polar Grid - Total Energy

e So far proved: our force preserves int. energy symmetry for all cells, incl. those at the z-axis.

e However, we obtained boundary node acceleration by ratio F /m, without choosing F or m.
The boundary accel. is not defined by our force F. This affects the tot. ener. conservation

e Introduce mass my. suchthat m, = Zp(c) Mpe, Mp = Zc(p) mpc and % = 0.
m For points not on the z-axis there is a nodal flux function G, thatis, > . ) Gpc = 0

m For cells away from z-axis the tot. ener. change is dﬁc = 2_p(c) Gpe, SO that for those cells

dE.

Zc dt Zc ZP(C) Gpe =0 ‘ )

m For cells at the z-axis, the proof of (1) involves a division by m, at points for which r;, = 0.
mm For pure AW using my.: both m,. and F,. are zero if p is a point on the z-axis
= for finite acceleration the boundary nodes are not present in the proof of
= cells at the z-axis can be included in the conservation of total energy. v
mm Our F) is defined at all nodes, including those on the z-axis.
¢ To guarantee symmetric de. and de. > 0 for cells at z-axis, the “work” of the z-axis viscous
force on the boundary nodes must be included in the internal energy change of those cells.
¢ But the viscous contribution to the acceleration of the z-axis nodes is obtained by the
constraint of symmetry preservation, not from F /m, (as it would have to be for energy
conservation up to the boundary).
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General Grids

e Up to now we assumed spherically symmetric initial data and grid

e Now we consider a general logically rectangular grid with only one restriction: the z-axis
must be one of the grid curves, that is either i=constant (:-curve) or j=constant (j-curve).
(We know of no other scheme where this is not the case.)

e Suppose it is an i-curve. Then if there are circles and rays the rays must be i-curves.
Thus, we take a. — 0 on all :-curves
Now we know that only the j-curves are possibly circles.

e Returning to the equiangular polar case , we can prove that

2

2 . 2 . . .
%Rj sin® v = %||Xi+1,j — X;_1,4/I°, where X; ; = (r,z);; = R;j(sin(iv), cos(iv)).

e Therefore, as the general default value of a. for the edge (i + %, 7) connecting the point at
(i, 7) to the point at (¢ + 1, j) we propose

1 2 2 .
@it1/2,§ = 16 (HXi—I—l,j — X157 + (1 Xiq2,5 — X 5l ) on all j-curves.

If there are equi-angular polar circles, the above will find them.
If not, then the default provides an acceptable viscosity.
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General Grids - z-axis Boundary Condition

e Suppose that o = 1. Consider an equi-angular polar grid with symmetric velocity

. S . dov; 4
e For an interior node (i, j), i > 0 we can write —. as
Ti,j+1 T Ti,j Tij—1 T Tij Ti—1,j T 2755 T Tig1,5
> ) (vl i1 v, ) + > ) (UZ 1 — v ) + ) ) ) (U'L—l L 21)2 . UZ+1 )
\ 2 m’L,j ) J 1] \ 2m’L,j ) J sJ \ 2 m’L,j ) ) J )
wi, in(]ép. oni ws, increp. on: wo+wy, f;ldep. on:

0,j+1

Stencil (Av and w) for the acceleration

0,j

< of an interior point (4, 5)

of a boundary (z—axis) point (0, j) — 0j-1

dé
e Now let the z-axis be the : = 0 ray. We apply reflection v_; ; = v; ; and define

T1,j4+1 1715 T1,j—1 171 O+2ry j+725
’ =(vg,j+1 — v0,5) T — =(vg,j—1 —vo,j) + : = 2(vy,5 — v0,j5)
. le,] . J »J . le,] . »J »J . le,j . J ]
1171 15,3 w21w4

where we used the "weights”w from the first off-axis node (1, j), because these are not
defined at i« = O (on the axis). This is legal because w, w3 and wo + w, don’t depend on 7

e Such choice of acceleration of nodes on z-axis also makes sense for a general grid.
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Numerical Results - Overview

e Methods: LapEdge (= ours) and for comparison CS (= Campbell-Shashkov incl. limiter as
in the original paper [Campbell and Shashkov, JCP 172 (2001)])
e Test problems shown here: Noh and Sedov

e 3 kinds of meshes:
Equiangular polar Perturbed polar (a« = 0.05) Rectangular

z-axis is the ray (: = 0), shown vertical at left in all figures
edges initially horizontal are formally circles with correction of (f),,

= on rect mesh: edges initially vertical are formally rays without correction of (f),

e Parameters (Kuropatenko, CFL, etc.):

- LapEdge: All tests, meshes and resolutions run with exactly the same method (no tuning)
- CS: Best results shown (a lot of tuning), dissipation enforced by a posteriori cutoff of work
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Numerical Results
LapEdge

- Noh and Sedov, Symmetric Polar Grid
CS (with limiter)
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Numerical Results - Noh, Perturbed Polar Grid (o = 0.05)

CS (with limiter)
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Numerical Results - Sedov, Perturbed Polar Grid (o = 0.075)

CS (with limiter)
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Numerical Results

20x 20 cells

- Noh, Rectangular Grid
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Numerical Results - Sedov, Rectangular Grid, LapEdge
20x 20 cells 40x40 cells 80x 80 cells
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Numerical Results - Other tests (done or planned)

e Sanity checks: all OK
- spherical problems shifted along z-axis (polar meshes)
- “1D” Riemann problems along z-axis (rectangular meshes)

e Saltzman: results ugly
- similar to “CS90” = try Rayleigh-Taylor instability to see if it kills vorticity

- using other subcells (edge triangles, corner triangles) helped a bit, but beyond scope

e Guderley (Lazarus)
- non-shifted (= mesh origin at the shock’s center of convergence): OK (not interesting here)

- shifted (“off-axis”): not tried yet (planned for a related project)
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Summary

Genuinely r-z (not AW) viscous force
Always dissipative (unlike AW) and symmetry-preserving

Applicable as is on various mesh topologies
(detects “circles” if they exist, provides acceptable visco if not)

No parameter tuning needed
(all tests and all resolutions with same CFL, same k1 = ks =1, ...)

Future Plans

Further tests, especially nonsymmetric test problems
Simpler approximation of correction term

Genuinely r-z pressure force with similar correction of the r-component
- symmetric and with very small violation of GCL
- cell pressure forces done, now working on subcell forces
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More Info

A Symmetry Preserving Dissipative Artificial Viscosity

in an r-z Staggered Lagrangian Discretization. Submitted to J. Comput. Phys.]
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